International Indian School, Riyadh

Worksheet on chapter 5 and 6

Class 12

Subject: Mathematics

1) Differentiate: $\cos x^3 \cdot \sin^2 x^5 \quad w.r.t.x$

2) Find:
$$\frac{dy}{dx}$$
 if ax²+2hxy+by²=0

3) Find:
$$\frac{dy}{dx}$$
 if y= tan⁻¹ ($\frac{3x - (x)3}{1 - 3x^{-2}}$)

- 4) Differentiate: $\frac{\sqrt{[(x-3)x^2+4)}}{\sqrt{3x^2+4x+5}}$ w.r.t.x
- 5) Find: $\frac{dy}{dx}$ if $y^x + x^y + x^x = a^b$
- 6) Differentiate: x^{cosx} + $(cosx)^{sinx}$ w.r.t.x

7) If
$$x = \sqrt{a^{\sin^{-1}}t}$$
; $y = \sqrt{a^{\cos^{-1}}t}$ show that $\frac{dy}{dx} = \frac{-y}{x}$

- 8) If x=cos θ cos 2θ ; y= sin θ sin 2θ find $\frac{dy}{dx}$
- 9) If $y=3 \cos(10gx)+4 \sin(10gx)$ show that $x^2y_2+xy_1+y=0$
- 10) If $y = (\tan^{-1}x)^2$ show that $(x^2+1)^2y_2 + 2x(x^2+1)y_1=2$
- 11) Differentiate: cos²x w.r.t. e^{sinx}

12) Differentiate:
$$\cot^{-1}\left[\frac{\sqrt{1+sinx^{1}}}{\sqrt{1+sinx^{1}}}\pm\frac{\sqrt{1-sinx^{1}}}{\sqrt{1-sinx^{1}}}\right]$$
 w.r.t.x

- 13) If $x\sqrt{1+y^1} + y\sqrt{1+x^1} = 0$ prove that $\frac{dy}{dx} = \frac{-1}{(1+x)^2}$
- 14) Find the interval in which the fuction f given by $f(x) = \sin x + \cos x$; $0 \le x \le 2\pi$ is strictly increasing or strictly decreasing.
- 15) A water tank has the shape of an inverted right circular cone with its axis vertical and vertex lowermost. Its semi-vertical angle is tan (0.5). Water is poured into it at a constant rate of 5 cubic meters per hour. Find the rate at which the level of the water is rising at the instant when the depth of water in the tank is 4m.
- 16) Show that the function f given by f9x)= tan⁻¹(sinx+ cosx); x≥0 always an strictly increasing function in $(0, \frac{\pi}{4})$
- 17) A point on the hypotenuse of a triangle is at distance 'a' and 'b' from the sides of the triangle. Show that the maximum length of the hypotenuse is $a^{2/3}+b^{2/3})^{3/2}$
- 18) Using differentiation find the approximate value of (33)^{-1/5}
- 19) Find the equation of the normal to the curve $x^2 = 4y$ which passes through the point (1,2)
- 20) Find the equation of tangent to the curve y = cos(x+y); $-2\pi \le x \le 2\pi$ that are parallel to x+2y=0.